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Abstract
The inhibitory activity of glucose-induced insulin secretion on isolated rat pancreatic islets and the contractile activity of KCl-
depolarized rat aorta rings of the derivatives of 3-alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide are quantitatively
analyzed using multiple regression analysis. The study has helped to ascertain the role of different substituents in explaining
these observed inhibitory activities. From a derived most significant correlation equation, it was concluded that a less
hydrophobic 3-substituent and a less bulky 7-substituent in addition to a 3-aminoisopropyl and a 6-chloro substituent are
advantageous to enhance the inhibitory action of a compound towards rat pancreatic islets. On the other hand, the more
hydrophobic 6- and 7-substituents augment the contractile activity. The analysis, in this way, provided the grounds for
rationalizing the substituent selection in designing the improved potency compounds in the series.

Keywords: 3-Alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide derivatives, inhibitory and contractile activity, QSAR
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Introduction

ATP-sensitive potassium channels (KATP channels)

regulate the flow of potassium ions through the cell

membrane. These were identified in a wide range of

cell types and are found to link the metabolic state to

the electric state of the cell [1–8]. KATP channels are

composed of two different protein subunits in a 4 þ 4

stoichiometry [9]. The KATP channel pore belongs to

the inwardly rectifying potassium channel family,

which is known as Kir6.x [10]. The second subunit,

the sulfonylurea receptor (SUR) subunit, contains the

regulatory sites for most drugs [10]. Four variants of

SUR, namely SUR1, SUR2A, SUR2B and SUR2C

have been reported [11]. KATP channels are composed

of different subunits according to their tissue

localization. For example, SUR1 combined with

Kir6.2 forms the pancreatic KATP channels [12]. The

combination of SUR2A and Kir6.2 subunits is found

in cardiac and skeletal muscle whereas the smooth

muscle KATP channel is composed of SUR2B and

Kir6.1 or Kir6.2 subunits [13]. The pancreatic KATP

channels are well-known to be involved in the insulin-

releasing process [14,15] and smooth muscle KATP

channels in the control of muscle tone [16,17], the

physiological roles of the different channel subtypes

have not yet been thoroughly assessed [18,19].

Several drugs, named as potassium channel openers

(PCOs), have been found to activate KATP channels

[20,21], leading to plasma membrane hyperpolarization

and reduction in cell excitability. This, in turn, may

provoke the relaxation of smooth muscles and/or the

inhibition of endocrine release [22,23]. Due to their

broad therapeutic potential, a large variety of KATP

channel agonists has been developed [24,25] including

chromane derivatives such as cromakalim [26], cyano-

guanidine compounds such as pinacidil [27] and 1,2,4-

benzothiadiazine derivatives such as diazoxide [28].

Selective activation of pancreatic KATP channels has

been demonstrated to be of clinical value in the
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treatment of several metabolic disorders, including type

I and type II diabetes, obesity and hyperinsulinemia

[29–32]. Until recently, diazoxide was the only reported

compound to activate pancreatic KATP channels, but as

a consequence of lack of tissue selectivity, it induces

many side effects such as hypertrichosis, edema,

headache and hypertension [33].

In the search for new pancreatic- selective PCOs,

a series comprising of 3-alkylamino-4H-pyrido-

and 21,2,4-benzothiadiazine 1,1-dioxides has been

developed; among them BPDZ 44 [34], BPDZ 73

[35], BPDZ 138 [36] and BPDZ 216 [37] were

identified as the first potent and selective pancreatic

KATP channel openers.

Recently, a series of 3-alkylamino-4H-1,2,4-ben-

zothiadiazine 1,1-dioxides was reported [38] and were

tested as putative KATP channel openers on a vascular

and a pancreatic pharmacological model in order to

evaluate their potency and tissue selectivity. The initial

structure-activity relationship (SAR) study on these

compounds was, however, directed only to alteration

of the substituents at different positions of the

structure but no rationale was provided to reduce

the trial-and-error factors. Hence, a quantitative SAR

(QSAR), on these analogues was conducted since

QSAR not only provides the rationale for drug design

but also illuminates their possible mechanism of

action at the molecular level.

Materials and methods

The reported series [38] consists of substituted

4H-1,2,4-benzothiadiazine 1,1-dioxides bearing in

most cases, a short alkylamino side chain in the 3-

position (Figure 1).These compounds along with their

activity values for rat pancreatic islets and rat aorta

rings are compiled in Table I. The activity, IC50, of a

compound represents its ability to inhibit glucose-

induced insulin secretion and was evaluated on isolated

rat pancreatic islets. The EC50, on the other hand,

represents the myorelaxant effect on the contractile

activity of KCl-depolarized rat aorta rings. For the

present work, these are expressed as pIC50 and pEC50

on a molar basis. The most appropriate quantifying

parameters are also listed in this Table. The physico-

chemical parameter, the hydrophobicity, p, is taken

from the literature [39] and the van der Waals volume

for a given substituent was calculated according

to the method discussed in one of our earlier

publications [40]. The ClogP values for the substi-

tuents at R3 were calculated from Chemdraw software

[40], following the default description of substituents.

For the present work the same is, therefore, designated

as ClogP(R3) to represent the descriptor as a

substituent property. Additionally, indicator variables

were also employed to reflect upon some special

structural features of a compound. The subscripted

numerals following these variables are indicative of the

varying positions in the title compounds. The multiple

regression analysis (MRA), employing the method of

least squares, was used to derive significant correlations

for further discussion. In addition to this, the final

QSAR equations were subjected to a validation test

[42] by the leave-one-out (LOO) method to derive the

cross-validation index, q 2. For a statistical robust

QSAR model, the internally validated q 2 index should

have a value between 0.6 and 0.9 [43].

Results and discussion

Table I lists the compounds where the alteration in

substituents occurred at different positions of the

diazoxide scaffold. To account for the effects

produced by such substituents, a large number of

descriptors related to hydrophobic, electronic and

steric interactions were initially examined for the

varying positions in various possible permutations.

The selected parameters for each of these positions

were hydrophobicity, p or ClogP, hydrogen-bond

acceptor, HA, molar refraction, MR, electronic ( para

and meta), s, field, F, resonance, R, Taft’s steric, Es,

molecular weight, MWand van der Waals volume, Vw.

The step-wise regression analysis was followed to

derive QSAR equations. A large number of equations

so obtained were then subjected to different statistical

tests. The correlation equations, which returned the

highest correlation coefficient, r and F-statistic and

lowest standard deviation, s, were finally retained for

further discussion. The significant correlation, derived

in the most appropriate quantifying parameters is

shown in Equation (1)

pIC50ðpancreasÞ ¼ 20:862ð^0:49ÞClogPðR3Þ

2 2:339ð^1:65ÞVw7

þ 0:553ð^0:27ÞI3

þ 0:542ð^0:30ÞI6 þ 6:291

n ¼ 24; r ¼ 0:806; s ¼ 0:341;Fð4; 19Þ ¼ 8:782;

q2 ¼ 0:420 ð1Þ
Figure 1. Structure of subsituted 4H-1,2,4-benzothiadiazine

1,1-dioxides.
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Table I. QSAR parameters and inhibitory and contractile activity of substituted 4H-1,2,4-benzothiadiazine 1,1-dioxides (See Figure1 for structure).

pIC50(M)a pEC50(M)b

S. No. R3 R6 R7 ClogP(R3) p6 p7 Vw7 (102 Å3) I3 I6 Obsd Calcd Eq(2) Prctd LOO Obsd Calcd Eq(4) Prctd LOO

1 NH-Et Cl Cl –0.09 0.71 0.71 0.244 0 1 6.60 6.54 6.53 5.96 5.39 5.32

2 NH-Pr Cl Cl 0.43 0.71 0.71 0.244 0 1 5.86 5.89 5.89 5.33 5.39 5.40

3 NH-iPr Cl Cl 0.21 0.71 0.71 0.244 1 1 6.55 6.62 6.63 5.64 5.39 5.36

4 NH-allyl Cl Cl 0.15 0.71 0.71 0.244 0 1 5.72 6.24 6.29 5.85 5.39 5.34

5 NH-cPr Cl Cl –0.27 0.71 0.71 0.244 0 1 5.48 –c –c –d –d –d

6 NH-cBu Cl Cl 0.29 0.71 0.71 0.244 0 1 5.90 6.06 6.08 4.90 –c –c

7 NH-Et Cl Br –0.09 0.71 0.86 0.287 0 1 6.57 6.45 6.42 5.57 5.61 5.61

8 NH-Pr Cl Br 0.21 0.71 0.86 0.287 1 1 6.59 6.52 6.51 5.25 5.61 5.67

9 NH-cBu Cl Br 0.29 0.71 0.86 0.287 0 1 5.92 5.97 5.98 5.18 5.61 5.68

10 NH-iPr H Cl 0.21 0.00 0.71 0.244 1 0 6.14 6.11 6.10 4.44 4.80 4.89

11 NH-iPr H Br 0.21 0.00 0.71 0.287 1 0 6.33 6.02 5.93 5.32 5.01 4.91

12 NH-Et Cl F –0.09 0.71 0.14 0.115 0 1 6.70 6.82 6.87 4.37 4.57 4.59

13 NH-Pr Cl F 0.43 0.71 0.14 0.115 0 1 6.28 6.17 6.14 4.34 4.57 4.60

14 NH-iPr Cl F 0.21 0.71 0.14 0.115 1 1 6.80 6.90 6.95 4.38 4.57 4.59

15 NH-cBu Cl F 0.29 0.71 0.14 0.115 0 1 6.64 6.35 6.28 4.40 4.57 4.59

16 NH-Et F F –0.09 0.14 0.14 0.115 0 0 6.43 6.32 6.23 4.18 4.09 4.08

17 NH-iPr F F 0.21 0.14 0.14 0.115 1 0 6.52 6.39 6.36 3.99 4.09 4.11

18 NH-iBu F F 0.83 0.14 0.14 0.115 0 1 5.25 5.16 5.11 –d –d –d

19 NH-Et Cl OMe –0.09 0.71 –0.02 0.304 0 1 6.32 6.41 6.43 –c –c –c

20 NH-iPr Cl OMe 0.21 0.71 –0.02 0.304 1 1 6.62 6.49 6.45 4.43 4.34 4.32

21 NH-cBu Cl OMe 0.29 0.71 –0.02 0.304 0 1 6.29 5.93 5.87 4.63 4.34 4.28

22 NH-iPr H F 0.21 0.00 0.14 0.115 1 0 6.12 6.39 6.47 4.37 3.97 3.88

23 NH-iPr H OMe 0.21 0.00 –0.02 0.304 1 0 5.76 5.98 6.05 3.56 3.74 3.80

24e CH3 H Cl 0.88 0.00 0.71 0.244 0 0 4.65 4.82 4.95 4.65 4.80 4.83

a pIC50 expressed as negative logarithm on molar basis, represents the inhibition of glucose-induced insulin secretion evaluated on isolated rat pancreatic islets; b pEC50 expressed as negative logarithm on

molar basis, represents the contractile activity of KCl-depolarized rat aorta rings; taken from Ref. [38]; c “Outlier” compound in the present study; d Uncertain activity; e Reference compound: diazoxide.
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As given above, n is the number of data points, F-

statistic is the F-ratio between the variances of

calculated and observed activities, and the ^ data

within the parentheses are the 90% confidence

intervals. The arbitrarily chosen indicator variables,

I3 and I6, stand to account, respectively for an

aminoisopropyl substituent at the 3-position and a

chloro substituent at the 6-position. Thus a value

either 1 or 0 for I3, in that order, indicates the presence

or absence of an aminoisopropyl substituent at the

3-position of diazoxide scaffold. Likewise, I6 ¼ 1 or 0

indicates, respectively, the presence or absence of a

6-chloro substituent.

From Equation (1), it appears that the

3-substituents are engaged in a hydrophobic inter-

action while the 7-substituents are involved in a

steric/polar interaction. In addition, the presence of

the 3-aminoisopropyl and 6-chloro substituents are

prerequisite for inhibitory action. The statistical

parameters of the above equation, however, do not

represent a sound model as the r 2 value accounts for

65% of the variance and q 2 is below the specified level

of significance, though the F-value remained signifi-

cant at 99% [F4,19(0.01) ¼ 4.500] level. These

observations merely reflect upon the parametric

requirements of the substituents in a compound that

may lead to agonistic activity for KATP channel.

In order to improve upon the significance levels of

Equation (1), all data points in Table I, were further

analyzed for their deviation from a regular trend. The

lone compound 5 (Table I), having a 3-NH-cPr

substituent, showed unusual behavior. At present, no

plausible explanation could be assigned for such an

abnormality. After removal of this compound the

QSAR analysis, through successive steps (Table II),

has revealed correlation Equation (2)

pIC50ðpancreasÞ ¼ 21:254ð^0:28ÞClogPðR3Þ

2 2:184ð^0:86ÞVw7

þ 0:454ð^0:14ÞI3

þ 0:505ð^0:16ÞI6 þ 6:455

n ¼ 23; r ¼ 0:920; s ¼ 0:223;Fð4; 18Þ ¼ 24:662;

q2 ¼ 0:765 ð2Þ

Now both the r- and F-values were increased to

account for 85% (r 2 ¼ 0.846) of variance in the

observed activities and 99% level of significance

[F4,18(0.01) ¼ 4.579], respectively. Also, the s-value

and 90% confidence intervals (^ data within

parentheses) associated with regression coefficients

were significantly lowered. Additionally, the higher

value obtained for q 2 expressed a reasonable QSAR

model. That the variables used in deriving Equation

(2) had no mutual correlation is shown in Table III.

The calculated activity values, using this equation and

listed in Table I, are in close agreement with the

observed ones. The predicted activity values, using

Equation (2), are also listed in this Table for the sake

of comparison. The plot of observed versus calculated

and predicted pIC50 values, is shown in Figure 2. Such

a plot is useful to understand the goodness of fit and to

identify the systematic trend. From Equation (2), it

appeared that a less hydrophobic 3-substituent and a

less bulky 7-substituent are advantageous to

improve the pIC50 value. In addition, the presence

of 3-aminoisopropyl and 6-chloro substituents are

favorable to enhance the activity.

The myorelaxant effects, reported in terms of the

contractile activity of KCl-depolarized rat aorta rings,

of these diazoxides were also correlated with quantify-

ing parameters. The derived correlation for the same,

is shown in Equation (3)

pEC50ðrat aortaÞ ¼ 0:873ð^0:41Þp6

þ 1:265ð^0:37Þp7 þ 3:841

n ¼ 22; r ¼ 0:853; s ¼ 0:350;Fð2; 19Þ ¼ 25:418;

q2 ¼ 0:637 ð3Þ

This equation analyzes the importance of 6- and 7-

substituents while the 3-substituents remained silent.

Compound 6 and 19 could not fit into the model and

are ignored to derive an improved QSAR Equation (4)

Table II. Stepwise development of Equation (2) pIC50(pancreas) ¼ a0 þa1ClogP(R3) þ a2Vw7 þa3 I3 þa4 I6

a0 a1 a2 a3 a4 r s Fk,n–k-1
a q 2 steps

6.553 –1.533(^0.50) 0.755 0.344 27.783 0.453 (i)

6.864 –1.584(^0.49) –1.381(^1.56) 0.784 0.334 15.943 0.463 (ii)

6.777 –1.551(^0.46) –1.486(^1.46) 0.263(^0.23) 0.824 0.312 13.426 0.517 (iii)

6.455 –1.254(^0.28) –2.184(^0.86) 0.454(^0.14) 0.505(^0.16) 0.920 0.223 24.662 0.765 (iv)

a The F statistics for n ( ¼ 23) data-points and k ( ¼ 1, 2, 3 & 4) independent variable(s).

Table III. Intercorrelation matrixa amongst independent variables

of Equation (2).

ClogP(R3) Vw7 IR3 IR6

ClogP(R3) 1.000 0.115 0.069 0.303

Vw7 1.000 0.071 0.232

IR3 1.000 0.350

IR6 1.000

a Matrix elements are the r-values.
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compared to Equation (3)

pEC50ðrat aortaÞ ¼ 0:837ð^0:37Þp6

þ 1:443ð^0:35Þp7 þ 3:772

n ¼ 20; r ¼ 0:900; s ¼ 0:307;Fð2; 17Þ ¼ 36:270;

q2 ¼ 0:737 ð4Þ

All the statistical parameters, including 90% confi-

dence intervals, of this equation have significantly

improved over that of Equation (3). The r-value now

accounts for 81% of the variance and the s-value is

lowered. In addition, the F value remained significant

at 99% level, and the q 2 index, explaining a

satisfactory statistical model, are both increased. The

calculated pEC50 values using Equation (4), and

predicted pEC50 values, using the LOO method, listed

in Table I, are in close agreement with the

observed ones. The independent variables of this

equation fulfill the mutual orthogonality condition (p6

vs p7 ¼ 0.071). From Equation (4), it appears

that more hydrophobic substituents present at 6-

and 7-positions augment activity.

The conclusions deduced from Equations (2) and

(4) may be used as guidelines to obtain more potent

compounds in the further synthesis of similar

compounds.
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